Showing posts with label physical activity. Show all posts
Showing posts with label physical activity. Show all posts

Monday, 4 February 2013

Energy cost of common activities in children and adolescents.

Journal of Physical Activity and Health. 2013 Jan;10(1):62-9.

Lyden K, Kozey Keadle S, Staudenmayer J, Freedson P, Alhassan S.
Dept of Kinesiology, University of Massachusetts-Amherst.

+/- Click for more/less

Abstract

BACKGROUND: The Compendium of Energy Expenditures for Youth assigns MET values to a wide range of activities. However, only 35% of activity MET values were derived from energy cost data measured in youth; the remaining activities were estimated from adult values.

PURPOSE: To determine the energy cost of common activities performed by children and adolescents and compare these data to similar activities reported in the compendium.

METHODS: Thirty-two children (8-11 years old) and 28 adolescents (12-16 years) completed 4 locomotion activities on a treadmill (TRD) and 5 age-specific activities of daily living (ADL). Oxygen consumption was measured using a portable metabolic analyzer.

RESULTS: In children, measured METs were significantly lower than compendium METs for 3 activities [basketball, bike riding, and Wii tennis (1.1-3.5 METs lower)]. In adolescents, measured METs were significantly lower than compendium METs for 4 ADLs [basketball, bike riding, board games, and Wii tennis (0.3-2.5 METs lower)] and 3 TRDs [2.24 m·s-1, 1.56 m·s-1, and 1.34 m·s-1 (0.4-0.8 METs lower)].

CONCLUSION: The Compendium of Energy Expenditures for Youth is an invaluable resource to applied researchers. Inclusion of empirically derived data would improve the validity of the Compendium of Energy Expenditures for Youth.

Click for more information

Monday, 22 October 2012

A Wii virtual activity severe thumb metacarpal injury.

BMJ Case Rep. 2012 Oct 10;2012

Galanopoulos I, Garlapati AK, Ashwood N, Kitsis C.

Department of Trauma and Orthopaedics, Queen's Hospital, Burton-on-Trent, UK.

+/- Click for more/less

Abstract 
In this paper we present a case of a severe thumb bone injury sustained during simulated sporting activity using a Wii games console. Although several types of injury related to this form of physical activity have been encountered during the last few years with increasing frequency, this particular basal thumb fracture has not been reported in the literature yet. This was a complex Rolando type of fracture similar to those obtained doing the actual activity mimicked by the game. Ensuring a safe environment and adequate preparation before undertaking sport is key to prevent injury and the same principles are needed when undertaking virtual sport.

Click here for more information

Saturday, 4 August 2012

Can exergames increase physical activity?

Posted by John Ferrara on June 7, 2012

Earlier this year, a study published in the journal Pediatrics found that five games that are marketed with the promise of increasing players' physical fitness produced no actual difference in activity. 78 kids between 9 and 12 were given Wii consoles, and then one group was given a couple of exergames while a control group was given "inactive" games like Madden and Mario Kart. The kids wore devices to measure their physical activity, and they kept logs of when they played.

+/- Click for more/less

To be certain, the study was performed by a very accomplished group of researchers. The lead author, Tom Baranowski of Baylor College, is one of the most widely published researchers of health games. And this was a very well-designed study, printed in the foremost journal on children's health. Nevertheless, the study should not be read to mean that games can't affect physical activity and can't have a positive impact on public health. That's because it didn't account for the most influential factor in a health game's impact -- its design.

More info

Thursday, 2 August 2012

The heart rate response to nintendo wii boxing in young adults.

Cardiopulmonary Physical Therapy Journal 2012 Jun;23(2):13-29.

Pamela R. Bosch, PT, DPT, PhD; Joseph Poloni, DPT; Andrew Thornton, DPT; James V. Lynskey, PT, PhD
Department of Physical Therapy, A.T. Still University, Mesa, Arizona

+/- Click for more/less

Abstract 

PURPOSE: To determine if 30 minutes of Nintendo Wii Sports boxing provides cardiorespiratory benefits and contributes to the daily exercise recommendations for healthy young adults.
METHODS: Twenty healthy 23- to 27-year-olds participated in two sessions to measure maximum heart rate (HR(max)) via a treadmill test and heart rate (HR) response to 30 minutes of Wii Sports boxing. Heart rate in beats per minute (bpm) was measured continuously, and exercise intensity during each minute of play was stratified as a percentage of HR(max). Mixed designs analysis of variance (ANOVA) and Pearson product moment correlations were used to analyze the data.
RESULTS: Mean (SD) HR response to boxing was 143 (15) bpm or 77.5% (10.0%) of HR(max). The mean HR response for experienced participants was significantly lower than inexperienced participants, P = .007. The ANOVA revealed a significant interaction between experience and time spent at various intensities, P = .009. Experienced participants spent more time in light to vigorous intensities, inexperienced participants in moderate to very hard intensities. Fitness was not correlated with mean HR response to boxing, P = .49.
CONCLUSION: Thirty minutes of Nintendo Wii Sports boxing provides a moderate to vigorous aerobic response in healthy young adults and can contribute to daily recommendations for physical activity.

Click here for more information

Sunday, 17 June 2012

Impact of an Active Video Game on Healthy Children's Physical Activity

Tom Baranowski, Dina Abdelsamad, Janice Baranowski, Teresia Margareta O'Connor, Debbe Thompson, Anthony Barnett, Ester Cerin and Tzu-An Chen
Pediatrics;
Originally published online February 27, 2012;

+/- Click for more/less

Abstract


OBJECTIVE: This naturalistic study tests whether children receiving a new (to them) active video game spontaneously engage in more physical activity than those receiving an inactive video game, and whether
the effect would be greater among children in unsafe neighbourhoods, who might not be allowed to play outside.

METHODS: Participants were children 9 to 12 years of age, with a BMI .50th percentile, but ,99th percentile; none of these children a medical condition that would preclude physical activity or playing video
games. A randomized clinical trial assigned children to receiving 2 active or 2 inactive video games, the peripherals necessary to run the games, and a Wii console. Physical activity was monitored by using accelerometers for 5 weeks over the course of a 13-week experiment. Neighbourhood safety was assessed with a 12 item validated questionnaire.

RESULTS: There was no evidence that children receiving the active video games were more active in general, or at any time, than children receiving the inactive video games. The outcomes were not moderated
by parent perceived neighborhood safety, child BMI z score, or other demographic characteristics.

CONCLUSIONS: These results provide no reason to believe that simply acquiring an active video game under naturalistic circumstances provides a public health benefit to children.

Click here for more information

Friday, 27 April 2012

Determining intensity levels for selected Wii Fit activities in college aged individuals.


By Joshua D. Grieser
Master of Science in Exercise and Sports Studies thesis
May 2010

+/- Click for more/less


ABSTRACT
Introduction: Physical activity is important to the proper growth, development, and overall health of an individual. Current physical activity trends show declines in activity level throughout aging. To counteract inactivity many physical activity interventions have been implemented in different age groups and yet very little change in activity level has been seen. The Nintendo Wii® offers a popular technological intervention tool with its movement oriented game play. The physiological costs and intensity of the Nintendo Wii Fit® game have not been thoroughly researched, yet the Wii is being used as a physical activity tool in many arenas.


Purpose: The purpose of this study was to determine the intensity level of playing selected Nintendo Wii Fit® games using indirect calorimetry. Using the intensity information, it was determined if playing Wii Fit® (an exercise themed game) on the Nintendo Wii® video game console is an adequate activity for meeting the ACSM moderate physical activity guidelines threshold. Participants: Twenty-five participants, 5 males and 20 females, aged 22 ± 2 years (M ± SD) with little previous Wii experience were recruited for this study.

Method: Participants randomly completed two different Wii Fit activity sessions with two difficulty levels within the strength, endurance, and yoga categories. A resting metabolic rate and exercise VO2were measured on each participant with a TrueMax 2400 metabolic cart. Oxygen consumption was then converted into metabolic equivalents to estimate activity intensity level. SPSS18.0 (Chicago, IL, USA) was use for statistical analysis.

Results: Results indicated that VO2 of the selected Wii Fit activities was significantly higher than resting 2 VO levels. For example, the least intense activity was the Yoga Warrior activity, which had a mean intensity of 2.30 ± 0.42 METs and was still significantly higher than resting 2 VO levels, t (24) = 15.5, p < .001. The calculated MET values ranged from 3.28 ± 0.71 METs to 3.43 ± 0.60 METs for the strength activities, and ranged from 4.98 ± 1.22 METs to 5.73 ± 1.36 METs for the aerobic Basic Run exercises, indicating that the intensity levels of these activities met or exceeded the ACSM moderate intensity threshold of 3 METs. In contrast, the yoga exercises were significantly lower (from 2.30 ± 0.42 METs to 2.6749 ± .48 METs) than the recommended 3 METs, t (24) = -3.347, p= .003 for moderate intensity physical activity. Finally, the results showed that the medium difficulty level aerobic exercises (5.73 ± 1.36 METs) had significantly higher MET values than the easy aerobic exercises (4.98 ± 1.22 METs), t (24) = 5.00, p < .001.

Discussion: The findings of this study illustrate the potential of the Nintendo Wii Fit® game to be an adequate physical activity tool. Furthermore, these findings will allow for the further advancement of exercise themed video games to become satisfactory replacements for traditional physical activities in future interventions.

Click here for more

Thursday, 5 April 2012

Comparison Between Nintendo Wii Fit Aerobics and Traditional Aerobic Exercise in Sedentary Young Adults

Douris, PC, McDonald, B, Vespi, F, Kelley, NC, and Herman, L.
Journal of Strength and Conditioning Research
26(4): 1052–1057, 2012

+/- Click for more/less

Abstract:


Exergaming is becoming a popular recreational activity for young adults. The purpose was to compare the physiologic and psychological responses of college students playing Nintendo Wii Fit, an active video game console, vs. an equal duration of moderate-intensity brisk walking. Twenty-one healthy sedentary college-age students (mean age 23.2 ± 1.8 years) participated in a randomized, double cross-over study, which compared physiologic and psychological responses to 30 minutes of brisk walking exercise on a treadmill vs. 30 minutes playing Nintendo Wii Fit “Free Run” program. Physiologic parameters measured included heart rate, rate pressure product, respiratory rate, and rating of perceived exertion. Participants' positive well-being, psychological distress, and level of fatigue associated with each exercise modality were quantified using the Subjective Exercise Experience Scale. The mean maximum heart rate (HRmax) achieved when exercising with Wii Fit (142.4 ± 20.5 b·min−1) was significantly greater (p = 0.001) compared with exercising on the treadmill (123.2 ± 13.7 b·min−1). Rate pressure product was also significantly greater (p = 0.001) during exercise on the Wii Fit. Participants' rating of perceived exertion when playing Wii Fit (12.7 ± 3.0) was significantly greater (p = 0.014) when compared with brisk walking on the treadmill (10.1 ± 3.3). However, psychologically when playing Wii Fit, participants' positive well-being decreased significantly (p = 0.018) from preexercise to postexercise when compared with exercising on the treadmill. College students have the potential to surpass exercise intensities achieved when performing a conventional standard for moderate-intensity exercise when playing Nintendo Wii Fit “Free Run” with a self-selected intensity. We concluded that Nintendo Wii Fit “Free Run” may act as an alternative to traditional moderate-intensity aerobic exercise in fulfilling the American College of Sports Medicine requirements for physical activity.

© 2012 National Strength and Conditioning Association

More info click here

Tuesday, 28 February 2012

Home-based balance training programme using Wii Fit with balance board for Parkinsons’s disease: A pilot study

Journal of Rehabilation Medicine 2012 Feb;44(2):144-50.

Esculier JF, Vaudrin J, Bériault P, Gagnon K, Tremblay LE.
Faculty of Health Sciences, School of Rehabilitation, University of Ottawa, Québec, Canada.

+/- Click for more/less

Abstract
Objectives: To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson’s disease, and to compare the effects with a group of paired healthy subjects.

Subjects: Ten subjects with moderate Parkinson’s disease and 8 healthy elderly subjects.

Methods: Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training.

Results: The Parkinson’s disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM.

Conclusion: This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson’s disease.

Click here for more

Monday, 19 December 2011

Assisting people with disabilities to actively improve their collaborative physical activities with Nintendo Wii Balance Boards by controlling environmental stimulation.

Research in Developmental Disabilities, Volume 33, Issue 1, January-February 2012, Pages 39-44
Ching-Hsiang Shih, Chia-Ju Shih and Ching-Tien Shih

+/- Click for more/less

Highlights ► Commercial high-technology products can be used as high performance assistive devices. ► The Nintendo Wii Balance Board can be used as a high performance standing location detector. ► Four people (two groups) with developmental disabilities can control environmental stimulation through the Wii Balance Board by performing collaborative physical activities.

Click here for more

Sunday, 18 December 2011

The energy expenditure of an activity-promoting video game compared to sedentary video games and TV watching

Journal of Pediatric Endocrinology and Metabolism. Volume 24, Issue 9-10, Pages 689–695
Naim Mitre, Randal C. Foster, Lorraine Lanningham-Foster & James A. Levine

+/- Click for more/less


Abstract

Background: In the present study we investigated the effect of television watching and the use of activity-promoting video games on energy expenditure in obese and lean children.

Methods: Energy expenditure and physical activity were measured while participants were watching television, playing a video game on a traditional sedentary video game console, and while playing the same video game on an activity-promoting video game console.

Results: Energy expenditure was significantly greater than television watching and playing video games on a sedentary video game console when children played the video game on the activity-promoting console. When examining movement with accelerometry, children moved significantly more when playing the video game on the Nintendo Wii console.

Conclusion: Activity-promoting video games have shown to increase movement, and be an important tool to raise energy expenditure by 50% when compared to sedentary activities of daily living.

Keywords children, energy expenditure, obesity, physical activity, television, video-games

Click here for more