Posted online on January 30, 2013.
Danielle E. Levac, PT, PhD and Patricia A. Miller, PT, PhD
+/- Click for more/less
Showing posts with label virtual reality. Show all posts
Showing posts with label virtual reality. Show all posts
Monday, 4 February 2013
Friday, 4 January 2013
Sony PlayStation EyeToy elicits higher levels of movement than the Nintendo Wii: implications for stroke rehabilitation.
Neil A, Ens S, Pelletier R, Jarus T, Rand D.
Source: Abilities Neurological Rehabilitation, Vancouver, Canada
European Journal of Physical Rehabilitation Medicine. 2012 Nov 21.
+/- Click for more/less
Abstract:
BACKGROUND: Virtual reality (VR) is an emerging trend in stroke rehabilitation. VR gaming consoles in stroke intervention have been shown to increase motivation and enjoyment during exercise. The amount and intensity of movements elicited using these consoles are unknown.
AIM: The aims of this study were: 1) to quantify the amount and intensity of movement elicited from both hands of two groups of individuals ([chronic stroke and without a disability [healthy]); 2) to determine the effect of console (Wii/EyeToy) and group (stroke/healthy) on the amount and intensity of upper extremity movement; 3) to determine the effect of console (Wii/EyeToy) and group (stroke/healthy) on the usability and VR experience.
DESIGN: A cross-sectional design was taken.
SETTING: Outpatient rehabilitation setting and healthy participant’s homes.
POPULATION: Participants included ten adults with stroke and ten adults without a disability. Methods. Participants experienced two games from each console. Amount and intensity of movement was measured using accelerometers on both wrists, while the virtual experience and usability was determined with questionnaires.
RESULTS: No significant differences were found between the consoles usability and experience. EyeToy elicited significantly greater activity count than Wii among the healthy participants (P=0.028) and significantly greater movement intensity in both the stroke (P=0.005) and healthy (P=0.005) groups.
CONCLUSION: Both consoles rated high for usability, enjoyment and satisfaction highlighting their suitability for a range of individuals in stroke rehabilitation. EyeToy provides increased movement and movement intensity.
CLINICAL REHABILITATION IMPACT: Both consoles are suitable for use in stroke rehabilitation however this information can be helpful to clinicians while selecting a gaming console according to the type and intensity of movements that he/she aims to encourage during therapy.
Click here for link
Source: Abilities Neurological Rehabilitation, Vancouver, Canada
European Journal of Physical Rehabilitation Medicine. 2012 Nov 21.
+/- Click for more/less
Abstract:
BACKGROUND: Virtual reality (VR) is an emerging trend in stroke rehabilitation. VR gaming consoles in stroke intervention have been shown to increase motivation and enjoyment during exercise. The amount and intensity of movements elicited using these consoles are unknown.
AIM: The aims of this study were: 1) to quantify the amount and intensity of movement elicited from both hands of two groups of individuals ([chronic stroke and without a disability [healthy]); 2) to determine the effect of console (Wii/EyeToy) and group (stroke/healthy) on the amount and intensity of upper extremity movement; 3) to determine the effect of console (Wii/EyeToy) and group (stroke/healthy) on the usability and VR experience.
DESIGN: A cross-sectional design was taken.
SETTING: Outpatient rehabilitation setting and healthy participant’s homes.
POPULATION: Participants included ten adults with stroke and ten adults without a disability. Methods. Participants experienced two games from each console. Amount and intensity of movement was measured using accelerometers on both wrists, while the virtual experience and usability was determined with questionnaires.
RESULTS: No significant differences were found between the consoles usability and experience. EyeToy elicited significantly greater activity count than Wii among the healthy participants (P=0.028) and significantly greater movement intensity in both the stroke (P=0.005) and healthy (P=0.005) groups.
CONCLUSION: Both consoles rated high for usability, enjoyment and satisfaction highlighting their suitability for a range of individuals in stroke rehabilitation. EyeToy provides increased movement and movement intensity.
CLINICAL REHABILITATION IMPACT: Both consoles are suitable for use in stroke rehabilitation however this information can be helpful to clinicians while selecting a gaming console according to the type and intensity of movements that he/she aims to encourage during therapy.
Click here for link
Labels:
cva,
eye toy,
Nintendo Wii,
rehab,
stroke,
upper limb,
virtual reality
Sunday, 6 May 2012
Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial
BMC Ear, Nose and Throat Disorders
Published: 26 March 2012
Dara Meldrum, Susan Herdman, Roisin Moloney, Deirdre Murray, Douglas Duffy, Kareena Malone, Helen French, Stephen Hone, Ronan Conroy and Rory McConn Walsh
+/- Click for more/less
Background
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unkown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus (R) (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy.
Methods
In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months.
Discussion
Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated.
Provisional PDF of article here Click here for more information
Dara Meldrum, Susan Herdman, Roisin Moloney, Deirdre Murray, Douglas Duffy, Kareena Malone, Helen French, Stephen Hone, Ronan Conroy and Rory McConn Walsh
+/- Click for more/less
Background
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unkown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus (R) (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy.
Methods
In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months.
Discussion
Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated.
Provisional PDF of article here Click here for more information
Labels:
balance,
gait,
rehab,
vestibular,
virtual reality,
wii fit
Wednesday, 25 April 2012
Interactive virtual reality Wii in geriatric day hospital: A study to assess its feasibility, acceptability and efficacy.
Geriatrics & Gerontology International
2012 Apr 2
Chan TC, Chan F, Shea YF, Lin OY, Luk JK, Chan FH. Source Department of Medicine, Division of Geriatrics, Queen Mary Hospital, The University of Hong Kong, Department of Medicine and Geriatrics, Fung Yiu King Hospital, Hong Kong, China
+/- Click for more/less
Abstract
Aim: Rehabilitation using interactive virtual reality Wii (Wii-IVR) was shown to be feasible in patients with different medical problems, but there was no study examining its use in a geriatric day hospital (GDH). The aim of the present study was to test the feasibility, acceptability and efficacy of Wii-IVR in GDH.
Methods: It was a clinical trial with matched historic controls. Patients of a GDH were recruited to participate in Wii-IVR by playing "Wii Fit". Participants used a Wii controller to carry out movements involved in an arm ergometer. Each participant received eight sessions of Wii-IVR in addition to conventional GDH rehabilitation. Feasibility was assessed by the total time receiving Wii-IVR, the percentage of maximal heart rate reserve (%MHR) and Borg perceived exertion scale (BS) after participating in Wii-IVR. %MHR and BS were compared with those after carrying out an arm ergometer for the same duration. Acceptability was assessed by an interviewer-administered questionnaire. Efficacy was assessed by comparing improvements in Functional Independence Measure (FIM) between participants and matched historic controls, who received conventional GDH rehabilitations only.
Results: A total of 30 patients completed the study. Participants completed a total of 1941 min of event-free Wii-IVR. The mean %MHR was 15.9% ± 9.9% and the mean BS was 7.9 ± 2.3. There was no significant difference in %MHR and BS between participating in Wii-IVR and arm ergometer. Most participants found Wii-IVR similar to the arm ergometer, and would like to continue Wii-IVR if they had Wii at home. Improvements in FIM of participants were significantly more than that of historic controls.
Conclusions: Wii-IVR in GDH was feasible and most participants accepted it. Participants had more improvements in FIM.
2012 Apr 2
Chan TC, Chan F, Shea YF, Lin OY, Luk JK, Chan FH. Source Department of Medicine, Division of Geriatrics, Queen Mary Hospital, The University of Hong Kong, Department of Medicine and Geriatrics, Fung Yiu King Hospital, Hong Kong, China
+/- Click for more/less
Abstract
Aim: Rehabilitation using interactive virtual reality Wii (Wii-IVR) was shown to be feasible in patients with different medical problems, but there was no study examining its use in a geriatric day hospital (GDH). The aim of the present study was to test the feasibility, acceptability and efficacy of Wii-IVR in GDH.
Methods: It was a clinical trial with matched historic controls. Patients of a GDH were recruited to participate in Wii-IVR by playing "Wii Fit". Participants used a Wii controller to carry out movements involved in an arm ergometer. Each participant received eight sessions of Wii-IVR in addition to conventional GDH rehabilitation. Feasibility was assessed by the total time receiving Wii-IVR, the percentage of maximal heart rate reserve (%MHR) and Borg perceived exertion scale (BS) after participating in Wii-IVR. %MHR and BS were compared with those after carrying out an arm ergometer for the same duration. Acceptability was assessed by an interviewer-administered questionnaire. Efficacy was assessed by comparing improvements in Functional Independence Measure (FIM) between participants and matched historic controls, who received conventional GDH rehabilitations only.
Results: A total of 30 patients completed the study. Participants completed a total of 1941 min of event-free Wii-IVR. The mean %MHR was 15.9% ± 9.9% and the mean BS was 7.9 ± 2.3. There was no significant difference in %MHR and BS between participating in Wii-IVR and arm ergometer. Most participants found Wii-IVR similar to the arm ergometer, and would like to continue Wii-IVR if they had Wii at home. Improvements in FIM of participants were significantly more than that of historic controls.
Conclusions: Wii-IVR in GDH was feasible and most participants accepted it. Participants had more improvements in FIM.
Labels:
elderly,
FIM,
rehab,
virtual reality,
wii fit
Saturday, 29 October 2011
Virtual reality for stroke rehabilitation - Review
Copyright © 2011 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd
Kate E Laver, Stacey George, Susie Thomas, Judith E Deutsch, Maria Crotty
+/- Click for more/less
Abstract
Background
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness.
Objectives
To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke.
Search strategy
We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers.
Selection criteria
Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function.
Data collection and analysis
Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information.
Main results
We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. Primary outcomes: results were statistically significant for arm function (standardised mean difference (SMD) 0.53, 95% confidence intervals (CI) 0.25 to 0.81 based on seven studies with 205 participants). There were no statistically significant effects for grip strength or gait speed. We were unable to determine the effect on global motor function due to insufficient numbers of comparable studies. Secondary outcomes: results were statistically significant for activities of daily living (ADL) outcome (SMD 0.81, 95% CI 0.39 to 1.22 based on three studies with 101 participants); however, we were unable to pool results for cognitive function, participation restriction and quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 34% (standard deviation (SD) 26, range 17 to 80) of participants screened were recruited.
Authors' conclusions
We found limited evidence that the use of virtual reality and interactive video gaming may be beneficial in improving arm function and ADL function when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength or gait speed. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term. Furthermore, there are currently very few studies evaluating the use of commercial gaming consoles (such as the Nintendo Wii).
Click here for more
Kate E Laver, Stacey George, Susie Thomas, Judith E Deutsch, Maria Crotty
+/- Click for more/less
Abstract
Background
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness.
Objectives
To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke.
Search strategy
We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers.
Selection criteria
Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function.
Data collection and analysis
Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information.
Main results
We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. Primary outcomes: results were statistically significant for arm function (standardised mean difference (SMD) 0.53, 95% confidence intervals (CI) 0.25 to 0.81 based on seven studies with 205 participants). There were no statistically significant effects for grip strength or gait speed. We were unable to determine the effect on global motor function due to insufficient numbers of comparable studies. Secondary outcomes: results were statistically significant for activities of daily living (ADL) outcome (SMD 0.81, 95% CI 0.39 to 1.22 based on three studies with 101 participants); however, we were unable to pool results for cognitive function, participation restriction and quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 34% (standard deviation (SD) 26, range 17 to 80) of participants screened were recruited.
Authors' conclusions
We found limited evidence that the use of virtual reality and interactive video gaming may be beneficial in improving arm function and ADL function when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength or gait speed. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term. Furthermore, there are currently very few studies evaluating the use of commercial gaming consoles (such as the Nintendo Wii).
Click here for more
Labels:
lower limb,
motor learning,
stroke,
upper limb,
virtual reality
Wednesday, 14 September 2011
Virtual reality for stroke rehabilitation: Review
Cochrane Database Syst Rev. 2011 Sep 7;9.
Laver KE, George S, Thomas S, Deutsch JE, Crotty M.
Department of Rehabilitation and Aged Care, Flinders University, Repatriation General Hospitals, Daws Road, Daw Park, Adelaide, Australia, 5041.
+/- Click for more/less
Abstract
BACKGROUND:
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness.
OBJECTIVES:
To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke.
SEARCH STRATEGY:
We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers.
SELECTION CRITERIA:
Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function.
DATA COLLECTION AND ANALYSIS:
Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information.
MAIN RESULTS:
We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. Primary outcomes: results were statistically significant for arm function (standardised mean difference (SMD) 0.53, 95% confidence intervals (CI) 0.25 to 0.81 based on seven studies with 205 participants). There were no statistically significant effects for grip strength or gait speed. We were unable to determine the effect on global motor function due to insufficient numbers of comparable studies. Secondary outcomes: results were statistically significant for activities of daily living (ADL) outcome (SMD 0.81, 95% CI 0.39 to 1.22 based on three studies with 101 participants); however, we were unable to pool results for cognitive function, participation restriction and quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 34% (standard deviation (SD) 26, range 17 to 80) of participants screened were recruited.
AUTHORS' CONCLUSIONS:
We found limited evidence that the use of virtual reality and interactive video gaming may be beneficial in improving arm function and ADL function when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength or gait speed. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term. Furthermore, there are currently very few studies evaluating the use of commercial gaming consoles (such as the Nintendo Wii).
For More Info Click Here
Laver KE, George S, Thomas S, Deutsch JE, Crotty M.
Department of Rehabilitation and Aged Care, Flinders University, Repatriation General Hospitals, Daws Road, Daw Park, Adelaide, Australia, 5041.
+/- Click for more/less
Abstract
BACKGROUND:
Virtual reality and interactive video gaming have emerged as new treatment approaches in stroke rehabilitation. In particular, commercial gaming consoles are being rapidly adopted in clinical settings; however, there is currently little information about their effectiveness.
OBJECTIVES:
To evaluate the effects of virtual reality and interactive video gaming on upper limb, lower limb and global motor function after stroke.
SEARCH STRATEGY:
We searched the Cochrane Stroke Group Trials Register (March 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 1), MEDLINE (1950 to March 2010), EMBASE (1980 to March 2010) and seven additional databases. We also searched trials registries, conference proceedings, reference lists and contacted key researchers in the area and virtual reality equipment manufacturers.
SELECTION CRITERIA:
Randomised and quasi-randomised trials of virtual reality ('an advanced form of human-computer interface that allows the user to 'interact' with and become 'immersed' in a computer-generated environment in a naturalistic fashion') in adults after stroke. The primary outcomes of interest were: upper limb function and activity, gait and balance function and activity and global motor function.
DATA COLLECTION AND ANALYSIS:
Two review authors independently selected trials based on pre-defined inclusion criteria, extracted data and assessed risk of bias. A third review author moderated disagreements when required. The authors contacted all investigators to obtain missing information.
MAIN RESULTS:
We included 19 trials which involved 565 participants. Study sample sizes were generally small and interventions and outcome measures varied, limiting the ability to which studies could be compared. Intervention approaches in the included studies were predominantly designed to improve motor function rather than cognitive function or activity performance. The majority of participants were relatively young and more than one year post stroke. Primary outcomes: results were statistically significant for arm function (standardised mean difference (SMD) 0.53, 95% confidence intervals (CI) 0.25 to 0.81 based on seven studies with 205 participants). There were no statistically significant effects for grip strength or gait speed. We were unable to determine the effect on global motor function due to insufficient numbers of comparable studies. Secondary outcomes: results were statistically significant for activities of daily living (ADL) outcome (SMD 0.81, 95% CI 0.39 to 1.22 based on three studies with 101 participants); however, we were unable to pool results for cognitive function, participation restriction and quality of life or imaging studies. There were few adverse events reported across studies and those reported were relatively mild. Studies that reported on eligibility rates showed that only 34% (standard deviation (SD) 26, range 17 to 80) of participants screened were recruited.
AUTHORS' CONCLUSIONS:
We found limited evidence that the use of virtual reality and interactive video gaming may be beneficial in improving arm function and ADL function when compared with the same dose of conventional therapy. There was insufficient evidence to reach conclusions about the effect of virtual reality and interactive video gaming on grip strength or gait speed. It is unclear at present which characteristics of virtual reality are most important and it is unknown whether effects are sustained in the longer term. Furthermore, there are currently very few studies evaluating the use of commercial gaming consoles (such as the Nintendo Wii).
For More Info Click Here
Labels:
lower limb,
review,
upper limb,
virtual reality
Sunday, 5 June 2011
Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. May 2011
Journal of Neuroengineering Rehabilitation.
2011 May 23;8(1):30
Gil-Gomez JA, Llorens R, Alcaniz M, Colomer C.
+/- Click for more/less
ABSTRACT:
BACKGROUND:
Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo Wii Balance Board (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance.
METHODS:
In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n=9) versus standard rehabilitation (n=8). Effectiveness was evaluated by means of traditional static and dynamic balance scales.
RESULTS:
The final sample consisted of 11 men and 6 women. Mean+-SD age was 47.3+-17.8 and mean+-SD chronicity was 570.9+-313.2 days. Patients using eBaViR had a significant improvement in static balance (p=0.011 in Berg Balance Scale and p=0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group.
CONCLUSIONS:
The results suggest that eBaViR represents a safe and effective alternative to traditional treatment to improve static balance in the ABI population. These results have encouraged us to reinforce the virtual treatment with new exercises, so an evolution of the system is currently being developed.
Click here for more information
2011 May 23;8(1):30
Gil-Gomez JA, Llorens R, Alcaniz M, Colomer C.
+/- Click for more/less
ABSTRACT:
BACKGROUND:
Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo Wii Balance Board (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance.
METHODS:
In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n=9) versus standard rehabilitation (n=8). Effectiveness was evaluated by means of traditional static and dynamic balance scales.
RESULTS:
The final sample consisted of 11 men and 6 women. Mean+-SD age was 47.3+-17.8 and mean+-SD chronicity was 570.9+-313.2 days. Patients using eBaViR had a significant improvement in static balance (p=0.011 in Berg Balance Scale and p=0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group.
CONCLUSIONS:
The results suggest that eBaViR represents a safe and effective alternative to traditional treatment to improve static balance in the ABI population. These results have encouraged us to reinforce the virtual treatment with new exercises, so an evolution of the system is currently being developed.
Click here for more information
Subscribe to:
Posts (Atom)
The Nintendo Wii is a popular virtual reality (VR) video gaming system in rehabilitation practice and research. As evidence emerges related to its effectiveness as a physical therapy training method, clinicians require information about the pragmatics of its use in practice. The purpose of this descriptive qualitative study is to explore observations and insights from a sample of physical therapists (PTs) working with children with acquired brain injury regarding practical implications of using the Wii as a physical therapy intervention. Six PTs employed at a children's rehabilitation center participated in semi-structured interviews, which were transcribed and analyzed using content analysis. Two themes summarize the practical implications of Wii use: 1) technology meets clinical practice; and 2) onus is on the therapist. Therapists described both beneficial and challenging implications arising from the intersection of technology and practice, and reported the personal commitment required to orient oneself to the gaming system and capably implement this intervention. Findings include issues that may be relevant to professional development in a broader rehabilitation context, including suggestions for the content of educational initiatives and the need for institutional support from managers in the form of physical resources for VR implementation.
Click here for more information