Multiple Sclerosis. 2013 Jan 15. [Epub ahead of print]
Brichetto G, Spallarossa P, de Carvalho ML, Battaglia MA.
Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Genoa, Italy.
+/- Click for more/less
Showing posts with label balance. Show all posts
Showing posts with label balance. Show all posts
Tuesday, 5 February 2013
Thursday, 3 January 2013
Can balance in children with cerebral palsy improve through use of an activity promoting computer game?
Technology and Health Care
Volume 20, Number 6 / 2012; Pages -501-510
Authors: Nerrolyn Ramstrand, Frida Lygnegård
Department of Rehabilitation, School of Health Sciences, Jönköping University, Jönköping, Sweden
+/- Click for more/less
Abstract
Introduction: This study aimed to evaluate if use of an activity promoting computer game, used in the home (Nintendo Wii Fit; Nintendo Co Ltd, Japan), could influence balance related outcome measures in children with cerebral palsy.
Method: Eighteen children with hemiplegic or diplegic cerebral palsy were recruited for the study. A randomised cross-over design was used with children tested at baseline, after five weeks of playing Wii Fit games and after five weeks without any intervention. Outcome measures of interest included: performance on the modified sensory organisation test, reactive balance test and rhythmic weight shift test.
Results: No significant difference was observed between testing occasions for any of the balance measures investigated (p > 0.05).
Conclusion: Our results suggest that use of a Nintendo Wii balance board and Wii Fit software for a minimum of thirty minutes per day in the patient's own home, over a five week period, is not effective as a balance training tool in children with cerebral palsy.
Keywords: Balance, postural stability, interactive games, Nintendo Wii, cerebral palsy, children
Click here for link
Volume 20, Number 6 / 2012; Pages -501-510
Authors: Nerrolyn Ramstrand, Frida Lygnegård
Department of Rehabilitation, School of Health Sciences, Jönköping University, Jönköping, Sweden
+/- Click for more/less
Abstract
Introduction: This study aimed to evaluate if use of an activity promoting computer game, used in the home (Nintendo Wii Fit; Nintendo Co Ltd, Japan), could influence balance related outcome measures in children with cerebral palsy.
Method: Eighteen children with hemiplegic or diplegic cerebral palsy were recruited for the study. A randomised cross-over design was used with children tested at baseline, after five weeks of playing Wii Fit games and after five weeks without any intervention. Outcome measures of interest included: performance on the modified sensory organisation test, reactive balance test and rhythmic weight shift test.
Results: No significant difference was observed between testing occasions for any of the balance measures investigated (p > 0.05).
Conclusion: Our results suggest that use of a Nintendo Wii balance board and Wii Fit software for a minimum of thirty minutes per day in the patient's own home, over a five week period, is not effective as a balance training tool in children with cerebral palsy.
Keywords: Balance, postural stability, interactive games, Nintendo Wii, cerebral palsy, children
Click here for link
Wednesday, 2 January 2013
Wii-habilitation as balance therapy for children with acquired brain injury.
Authors: Tatla SK, Radomski A, Cheung J, Maron M, Jarus T.
Developmental Neurorehabilation. 2012 Dec 11. [Epub ahead of print]
Acute Rehabilitation Team, Sunny Hill Health Centre for Children, 3644 Slocan Avenue , Vancouver, BC V5M 3E8 , Canada.
+/- Click for more/less
Abstract
Purpose: To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury.
Methods: A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines.
Results: Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability.
Conclusion: Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.
Click here for link
Developmental Neurorehabilation. 2012 Dec 11. [Epub ahead of print]
Acute Rehabilitation Team, Sunny Hill Health Centre for Children, 3644 Slocan Avenue , Vancouver, BC V5M 3E8 , Canada.
+/- Click for more/less
Abstract
Purpose: To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury.
Methods: A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines.
Results: Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability.
Conclusion: Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.
Click here for link
Labels:
acquired brain injury,
balance,
balance training,
children,
rehab
Thursday, 25 October 2012
Changes in balance in older adults based on use of physical therapy vs the Wii Fit gaming system: a preliminary study.
Physiotherapy. 2012 Sep;98(3):211-6. Epub 2011 Apr 29.
Bateni H.
School of Allied Health and Communicative Disorders, Physical Therapy Program, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2828, USA
+/- Click for more/less
Abstract
OBJECTIVES: To determine the effectiveness of Wii Fit training on balance control in older adults compared with physical therapy training.
DESIGN: Quasi-experimental design.
PARTICIPANTS: Eight males and nine females aged 53 to 91 years.
MATERIALS AND METHODS: Participants were divided into three groups: one group received both physical therapy training and Wii Fit training (PW group), one group received Wii Fit training alone (WI group), and one group received physical therapy training alone (PT group). Training consisted of three sessions per week for 4 weeks.
MAIN OUTCOME: Berg Balance Scale (all groups) and Bubble Test (PW and WI groups) scores.
STATISTICAL ANALYSIS: Descriptive statistics, medians, interquartile ranges and 95% confidence intervals are reported to identify trends in balance control as a result of different types of training.
RESULTS: All subjects showed improvement in the Berg Balance Scale and Bubble Test scores. The PT and PW groups tended to perform better than the WI group on the Berg Balance Scale following treatment. Although the differences in the Bubble Test score were not substantial between the PW and WI groups, the PW group performed slightly better than the WI group on the Berg Balance Scale.
CONCLUSIONS: Wii Fit training appears to improve balance. However, physical therapy training on its own or in addition to Wii Fit training appears to improve balance to a greater extent than Wii Fit training alone.
Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Click here for more information
Bateni H.
School of Allied Health and Communicative Disorders, Physical Therapy Program, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2828, USA
+/- Click for more/less
Abstract
OBJECTIVES: To determine the effectiveness of Wii Fit training on balance control in older adults compared with physical therapy training.
DESIGN: Quasi-experimental design.
PARTICIPANTS: Eight males and nine females aged 53 to 91 years.
MATERIALS AND METHODS: Participants were divided into three groups: one group received both physical therapy training and Wii Fit training (PW group), one group received Wii Fit training alone (WI group), and one group received physical therapy training alone (PT group). Training consisted of three sessions per week for 4 weeks.
MAIN OUTCOME: Berg Balance Scale (all groups) and Bubble Test (PW and WI groups) scores.
STATISTICAL ANALYSIS: Descriptive statistics, medians, interquartile ranges and 95% confidence intervals are reported to identify trends in balance control as a result of different types of training.
RESULTS: All subjects showed improvement in the Berg Balance Scale and Bubble Test scores. The PT and PW groups tended to perform better than the WI group on the Berg Balance Scale following treatment. Although the differences in the Bubble Test score were not substantial between the PW and WI groups, the PW group performed slightly better than the WI group on the Berg Balance Scale.
CONCLUSIONS: Wii Fit training appears to improve balance. However, physical therapy training on its own or in addition to Wii Fit training appears to improve balance to a greater extent than Wii Fit training alone.
Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Click here for more information
Labels:
balance,
balance board,
elderly,
wii fit
Friday, 3 August 2012
Assessment of the postural control strategies used to play two Wii Fit™ videogames
Gait Posture. 2012 Jul;36(3):449-53.
A. Michalski, C.M. Glazebrook, A.J. Martin, W.W.N. Wong, A.J.W. Kim, K.D. Moody, N.M. Salbach, B. Steinnagel, J. Andrysek, R. Torres-Moreno, K.F. Zabjek
+/- Click for more/less
A. Michalski, C.M. Glazebrook, A.J. Martin, W.W.N. Wong, A.J.W. Kim, K.D. Moody, N.M. Salbach, B. Steinnagel, J. Andrysek, R. Torres-Moreno, K.F. Zabjek
+/- Click for more/less
Abstract
The Nintendo Wii Fit™ may provide an affordable alternative to traditional biofeedback or virtual reality systems for retraining or improving motor function in populations with impaired balance. The purpose of this study was to evaluate postural control strategies healthy individuals use to play Wii Fit™ videogames. Sixteen young adults played 10 trials of Ski Slalom and Soccer Heading respectively. Centre of pressure (COP) excursion and three-dimensional movement data were acquired to determine variability in medial–lateral COP sway and shoulder–pelvic movement. While there was no difference in medial–lateral COP variability between games during trial 1, there was a significant difference after 10 trials. COP sway increased (59–75mm) for Soccer Heading while it decreased (67–33mm) for Ski Slalom from trial 1 to trial 10. During Ski Slalom participants demonstrated decreased shoulder and pelvic movement combined with increased pelvic–shoulder coupling. Conversely, participants demonstrated greater initial shoulder tilt when playing Soccer Heading, with no reduction in pelvic rotation and tilt. Participants decreased pelvic and trunk movements when skiing, suggesting a greater contribution of lower extremity control while they primarily used a trunk strategy to play Soccer Heading.
Highlights
► We evaluated the balance control strategies adopted when participants played the Wii Fit™.
► Distinct strategies emerged with increased experience playing the Soccer Heading and Ski Slalom games. ► With experience centre of pressure variability increased for Soccer Heading and decreased for Ski Slalom games.
► When playing Soccer Heading participants demonstrated greater shoulder tilt.
► When playing Ski Slalom participants demonstrated increased pelvic–shoulder coupling.
Keywords: Balance control, Balance training, Centre of pressure
Click here for more information
The Nintendo Wii Fit™ may provide an affordable alternative to traditional biofeedback or virtual reality systems for retraining or improving motor function in populations with impaired balance. The purpose of this study was to evaluate postural control strategies healthy individuals use to play Wii Fit™ videogames. Sixteen young adults played 10 trials of Ski Slalom and Soccer Heading respectively. Centre of pressure (COP) excursion and three-dimensional movement data were acquired to determine variability in medial–lateral COP sway and shoulder–pelvic movement. While there was no difference in medial–lateral COP variability between games during trial 1, there was a significant difference after 10 trials. COP sway increased (59–75mm) for Soccer Heading while it decreased (67–33mm) for Ski Slalom from trial 1 to trial 10. During Ski Slalom participants demonstrated decreased shoulder and pelvic movement combined with increased pelvic–shoulder coupling. Conversely, participants demonstrated greater initial shoulder tilt when playing Soccer Heading, with no reduction in pelvic rotation and tilt. Participants decreased pelvic and trunk movements when skiing, suggesting a greater contribution of lower extremity control while they primarily used a trunk strategy to play Soccer Heading.
Highlights
► We evaluated the balance control strategies adopted when participants played the Wii Fit™.
► Distinct strategies emerged with increased experience playing the Soccer Heading and Ski Slalom games. ► With experience centre of pressure variability increased for Soccer Heading and decreased for Ski Slalom games.
► When playing Soccer Heading participants demonstrated greater shoulder tilt.
► When playing Ski Slalom participants demonstrated increased pelvic–shoulder coupling.
Keywords: Balance control, Balance training, Centre of pressure
Click here for more information
Labels:
balance,
postural activity,
postural control,
posture,
wii fit
Monday, 23 July 2012
A game-console to improve balance in Parkinson Disease: preliminary results using the Nintendo Wii
Italian Journal of Physiotherapy 2012 June;2(2):45-9
Pelosin E., Avanzino L., Trompetto C., Marinelli L., Marchese R., Abbruzzese G.
+/- Click for more/less
Pelosin E., Avanzino L., Trompetto C., Marinelli L., Marchese R., Abbruzzese G.
+/- Click for more/less
Abstract:
AIM: Balance impairment is a common problem in idiopathic Parkinson’s disease (PD) often responsible for increased risk of falls, mobility restriction and loss of independence. Conventional exercises are often repetitive and may induce patients to lose their interest and to interrupt physical therapy at home. This study was aimed at evaluating theeffect of 5 days training with a low-cost, commercially available playing system, the Nintendo Wii® (NW), in improving balance in PD.
METHODS: Ten patients with PD and ten aged-match normal subjects (NS) were recruited and performed 30 minutes exercises playing with NW every day for one week. Subjects were evaluated by means of static posturography and Berg Balance Scale (BBS) before and after training.
RESULTS: The 5-day training, based on video-game system, induced a significant decrease in all the posturographic parameters in both groups improving postural stability of PD to a level comparable to baseline condition in NS. BBS score improved after training in PD patients.
CONCLUSION: These preliminary results suggest that a video game-based approach can exert a positive effect improving postural stability in PD patients. Because the NW device promotes better compliance, has wide applicability and is enjoyable to use, this treatment concept holds promise for PD rehabilitation
Click here for more information
AIM: Balance impairment is a common problem in idiopathic Parkinson’s disease (PD) often responsible for increased risk of falls, mobility restriction and loss of independence. Conventional exercises are often repetitive and may induce patients to lose their interest and to interrupt physical therapy at home. This study was aimed at evaluating theeffect of 5 days training with a low-cost, commercially available playing system, the Nintendo Wii® (NW), in improving balance in PD.
METHODS: Ten patients with PD and ten aged-match normal subjects (NS) were recruited and performed 30 minutes exercises playing with NW every day for one week. Subjects were evaluated by means of static posturography and Berg Balance Scale (BBS) before and after training.
RESULTS: The 5-day training, based on video-game system, induced a significant decrease in all the posturographic parameters in both groups improving postural stability of PD to a level comparable to baseline condition in NS. BBS score improved after training in PD patients.
CONCLUSION: These preliminary results suggest that a video game-based approach can exert a positive effect improving postural stability in PD patients. Because the NW device promotes better compliance, has wide applicability and is enjoyable to use, this treatment concept holds promise for PD rehabilitation
Click here for more information
Labels:
balance,
balance board,
parkinsons disease,
rehab,
wii
Thursday, 5 July 2012
WiiFit™ Plus balance test scores for the assessment of balance and mobility in older adults
Gait and Posture
Rebecca J. Reed-Jones, Sandor Dorgo , Maija K. Hitchings , Julia O. Bader
Rebecca J. Reed-Jones, Sandor Dorgo , Maija K. Hitchings , Julia O. Bader
Highlights
► WiiFit™ balance tests do not correlate with standardized functional balance, mobility and fitness tests. ► Wii balance score does correlate with visual processing speed as measured by Useful Field of View. ► WiiFit™ may provide advantageous information supplementary to standard functional mobility and balance tests. ► Caution should be used when using the WiiFit™ balance tests in isolation to test balance ability.
Abstract
The Nintendo Wii™ is becoming an increasingly popular technology for the training and assessment of balance in older adults. Recent studies have shown promising results for its use in fall prevention. However, it is not clear how scores on the WiiFit™ balance games relate to current standardized tests of balance and mobility. The purpose of this study was to evaluate the relationship between WiiFit™ Plus balance tests, and standardized tests of older adult fitness, balance, mobility, self-reported balance confidence, and visual attention and processing. Results from 34 older adult participants indicate that WiiFit™ balance tests do not correlate well with standardized functional balance, mobility and fitness tests. However, the Wii balance score, as measured by the Basic Balance Test of the WiiFit™, does correlate with visual processing speed as measured by the Useful Field of View (UFOV®) test. These results indicate that WiiFit™ balance tests may provide advantageous information supplementary to information obtained through standard functional mobility and balance tests; however, caution should be used when using the WiiFit™ balance tests in isolation. Further research is necessary as these technologies become widely used in clinical and home settings for balance training and assessment.
Labels:
balance,
balance board,
wii,
wii fit
Monday, 25 June 2012
Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study.
Ylva E Nilsagård, Anette S Forsber and Lena von Koch
Multiple Sclerosis Journal, 2012 June 6
+/- Click for more/less
Abstract
Background: The use of interactive video games is expanding within rehabilitation. The evidence base is, however, limited.
Objective: Our aim was to evaluate the effects of a Nintendo Wii Fit® balance exercise programme on balance function and walking ability in people with multiple sclerosis (MS).
Methods: A multi-centre, randomised, controlled single-blinded trial with random allocation to exercise or no exercise. The exercise group participated in a programme of 12 supervised 30-min sessions of balance exercises using Wii games, twice a week for 6–7 weeks. Primary outcome was the Timed Up and Go test (TUG). In total, 84 participants were enrolled; four were lost to follow-up.
Results: After the intervention, there were no statistically significant differences between groups but effect sizes for the TUG, TUGcognitive and, the Dynamic Gait Index (DGI) were moderate and small for all other measures. Statistically significant improvements within the exercise group were present for all measures (large to moderate effect sizes) except in walking speed and balance confidence. The non-exercise group showed statistically significant improvements for the Four Square Step Test and the DGI.
Conclusion: In comparison with no intervention, a programme of supervised balance exercise using Nintendo Wii Fit® did not render statistically significant differences, but presented moderate effect sizes for several measures of balance performance.
Click here for more info
Multiple Sclerosis Journal, 2012 June 6
+/- Click for more/less
Abstract
Background: The use of interactive video games is expanding within rehabilitation. The evidence base is, however, limited.
Objective: Our aim was to evaluate the effects of a Nintendo Wii Fit® balance exercise programme on balance function and walking ability in people with multiple sclerosis (MS).
Methods: A multi-centre, randomised, controlled single-blinded trial with random allocation to exercise or no exercise. The exercise group participated in a programme of 12 supervised 30-min sessions of balance exercises using Wii games, twice a week for 6–7 weeks. Primary outcome was the Timed Up and Go test (TUG). In total, 84 participants were enrolled; four were lost to follow-up.
Results: After the intervention, there were no statistically significant differences between groups but effect sizes for the TUG, TUGcognitive and, the Dynamic Gait Index (DGI) were moderate and small for all other measures. Statistically significant improvements within the exercise group were present for all measures (large to moderate effect sizes) except in walking speed and balance confidence. The non-exercise group showed statistically significant improvements for the Four Square Step Test and the DGI.
Conclusion: In comparison with no intervention, a programme of supervised balance exercise using Nintendo Wii Fit® did not render statistically significant differences, but presented moderate effect sizes for several measures of balance performance.
Click here for more info
Labels:
balance,
MS,
Multiple Sclerosis,
wii fit
Sunday, 6 May 2012
Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial
BMC Ear, Nose and Throat Disorders
Published: 26 March 2012
Dara Meldrum, Susan Herdman, Roisin Moloney, Deirdre Murray, Douglas Duffy, Kareena Malone, Helen French, Stephen Hone, Ronan Conroy and Rory McConn Walsh
+/- Click for more/less
Background
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unkown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus (R) (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy.
Methods
In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months.
Discussion
Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated.
Provisional PDF of article here Click here for more information
Dara Meldrum, Susan Herdman, Roisin Moloney, Deirdre Murray, Douglas Duffy, Kareena Malone, Helen French, Stephen Hone, Ronan Conroy and Rory McConn Walsh
+/- Click for more/less
Background
Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unkown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus (R) (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy.
Methods
In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months.
Discussion
Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated.
Provisional PDF of article here Click here for more information
Labels:
balance,
gait,
rehab,
vestibular,
virtual reality,
wii fit
Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii® Fit Plus, Disability and Rehabilitation
Disability and Rehabilitation: Assistive Technology
May 2012, Vol. 7, No. 3 , Pages 205-210
Dara Meldrum, Aine Glennon1, Susan Herdman, Deirdre Murray, Rory McConn-Walsh
+/- Click for more/less
May 2012, Vol. 7, No. 3 , Pages 205-210
Dara Meldrum, Aine Glennon1, Susan Herdman, Deirdre Murray, Rory McConn-Walsh
+/- Click for more/less
Abstract:
Purpose: The aim of this study was to investigate the usability of the Nintendo Wii Fit Plus® (NWFP) in the treatment of balance impairment in vestibular and other neurological disease.
Methods: This was a cross-sectional, quasi-experimental study. Participants (n = 26; mean age 43 ± 14, M13:F13) with quantified balance impairment took part in a 30-minute session on the NWFP using exercises and games that challenge balance. Outcomes included the System Usability Scale (SUS), a numerical rating scale of enjoyment and a post treatment questionnaire.
Results: The mean SUS score was high (mean 82 ± 18%) with only two participants rating below 50%. There was a negative correlation of age with SUS scores (r = −0.54; p = 0.004). Mean numerical rating scale score (/10) for enjoyment of the NWFP session was 8.4 ± 3. Of the participants, 88.5% said that they would like to use the NWFP in future treatment. Seventy-three percent reported more enjoyment and motivation than usual physiotherapy. No falls occurred during testing.
Conclusions: This study has quantified the usability of the NWFP as a treatment for balance impairment showing high levels of usability and enjoyment with no serious adverse effects. The results of this study may assist physiotherapists in devising novel balance rehabilitation programmes.
Implications for Rehabilitation
The Nintendo Wii Fit Plus® virtual reality system has the potential to improve balance rehabilitation, but usability of this system requires investigation.
In this study, patients with balance impairment as a result of neurological disease reported very high levels of usability and enjoyment when performing selected Nintendo Wii Fit Plus® balance exercises and games.
The majority of patients preferred the Nintendo Wii Fit Plus to conventional treatment which may have implications for patient compliance with exercise.
Click here for more
Purpose: The aim of this study was to investigate the usability of the Nintendo Wii Fit Plus® (NWFP) in the treatment of balance impairment in vestibular and other neurological disease.
Methods: This was a cross-sectional, quasi-experimental study. Participants (n = 26; mean age 43 ± 14, M13:F13) with quantified balance impairment took part in a 30-minute session on the NWFP using exercises and games that challenge balance. Outcomes included the System Usability Scale (SUS), a numerical rating scale of enjoyment and a post treatment questionnaire.
Results: The mean SUS score was high (mean 82 ± 18%) with only two participants rating below 50%. There was a negative correlation of age with SUS scores (r = −0.54; p = 0.004). Mean numerical rating scale score (/10) for enjoyment of the NWFP session was 8.4 ± 3. Of the participants, 88.5% said that they would like to use the NWFP in future treatment. Seventy-three percent reported more enjoyment and motivation than usual physiotherapy. No falls occurred during testing.
Conclusions: This study has quantified the usability of the NWFP as a treatment for balance impairment showing high levels of usability and enjoyment with no serious adverse effects. The results of this study may assist physiotherapists in devising novel balance rehabilitation programmes.
Implications for Rehabilitation
The Nintendo Wii Fit Plus® virtual reality system has the potential to improve balance rehabilitation, but usability of this system requires investigation.
In this study, patients with balance impairment as a result of neurological disease reported very high levels of usability and enjoyment when performing selected Nintendo Wii Fit Plus® balance exercises and games.
The majority of patients preferred the Nintendo Wii Fit Plus to conventional treatment which may have implications for patient compliance with exercise.
Click here for more
Labels:
assessment,
balance,
rehab,
wii fit
Wednesday, 4 April 2012
Clinical Use of Nintendo Wii(TM) Bowling Simulation to Decrease Fall Risk in an Elderly Resident of a Nursing Home: A Case Report
Journal of Geriatric Physical Therapy:
2009 - Volume 32 - Issue 4 - p 174–180
Case Report
Authors: Clark, Robert PT, ; Kraemer, Theresa PT, PhD,
+/- Click for more/less
Abstract
Purpose:: Of the estimated 1.7 million residents of nursing homes in the United States, approximately half fall annually; and 11% of these sustain injury. This is twice the rate for persons dwelling in the community. By addressing fall risk, physical therapists have an opportunity to reduce falls which are the leading cause of injury deaths, as well as the most common cause of nonfatal injuries for older adults in the United States. This case report examines the effect of a novel interactive video game intervention to address balance dysfunction in an elderly resident of a nursing home who was at risk for falls.
Case Description:: The patient is an 89‐year‐old resident diagnosed with an unspecified balance disorder and a history of multiple falls. Self reports of gait abnormalities, scores on several clinical measures, and her fall history classified her as having substantial risk for future falls.
Intervention:: A nontraditional approach to balance training, employing the Nintendo Wii bowling simulation, was used as intervention for this patient's balance disorder.
Outcomes:: After 6 one‐hour treatment sessions, the patient's Berg Balance Score improved from 48 to 53. On the Dynamic Gait Index, the patient improved her score from 19 to 21. The patient's Timed Up and Go Test improved from 14.9 to 10.5 seconds, all suggesting a reduced risk of falling. The patient's ABC Score improved from 88 to 90%.
Conclusion:: Physical therapy intervention, using the Nintendo Wii bowling simulation, may have decreased fall risk for this individual.
Click here for more info
Authors: Clark, Robert PT, ; Kraemer, Theresa PT, PhD,
+/- Click for more/less
Abstract
Purpose:: Of the estimated 1.7 million residents of nursing homes in the United States, approximately half fall annually; and 11% of these sustain injury. This is twice the rate for persons dwelling in the community. By addressing fall risk, physical therapists have an opportunity to reduce falls which are the leading cause of injury deaths, as well as the most common cause of nonfatal injuries for older adults in the United States. This case report examines the effect of a novel interactive video game intervention to address balance dysfunction in an elderly resident of a nursing home who was at risk for falls.
Case Description:: The patient is an 89‐year‐old resident diagnosed with an unspecified balance disorder and a history of multiple falls. Self reports of gait abnormalities, scores on several clinical measures, and her fall history classified her as having substantial risk for future falls.
Intervention:: A nontraditional approach to balance training, employing the Nintendo Wii bowling simulation, was used as intervention for this patient's balance disorder.
Outcomes:: After 6 one‐hour treatment sessions, the patient's Berg Balance Score improved from 48 to 53. On the Dynamic Gait Index, the patient improved her score from 19 to 21. The patient's Timed Up and Go Test improved from 14.9 to 10.5 seconds, all suggesting a reduced risk of falling. The patient's ABC Score improved from 88 to 90%.
Conclusion:: Physical therapy intervention, using the Nintendo Wii bowling simulation, may have decreased fall risk for this individual.
Click here for more info
Labels:
balance,
elderly,
falls,
wii sports
Tuesday, 28 February 2012
Home-based balance training programme using Wii Fit with balance board for Parkinsons’s disease: A pilot study
Journal of Rehabilation Medicine 2012 Feb;44(2):144-50.
Esculier JF, Vaudrin J, Bériault P, Gagnon K, Tremblay LE.
Faculty of Health Sciences, School of Rehabilitation, University of Ottawa, Québec, Canada.
+/- Click for more/less
Esculier JF, Vaudrin J, Bériault P, Gagnon K, Tremblay LE.
Faculty of Health Sciences, School of Rehabilitation, University of Ottawa, Québec, Canada.
+/- Click for more/less
Abstract
Objectives: To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson’s disease, and to compare the effects with a group of paired healthy subjects.
Subjects: Ten subjects with moderate Parkinson’s disease and 8 healthy elderly subjects.
Methods: Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training.
Results: The Parkinson’s disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM.
Conclusion: This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson’s disease.
Click here for more
Objectives: To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson’s disease, and to compare the effects with a group of paired healthy subjects.
Subjects: Ten subjects with moderate Parkinson’s disease and 8 healthy elderly subjects.
Methods: Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training.
Results: The Parkinson’s disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM.
Conclusion: This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson’s disease.
Click here for more
Labels:
balance,
mobility,
parkinsons disease,
physical activity,
rehab,
wii,
wii fit
Monday, 27 February 2012
Wii Fit® training vs. Adapted Physical Activities: which one is the most appropriate to improve the balance of independent senior subjects? A randomized controlled study
Clinical Rehabilation 2012 Feb 9. [Epub ahead of print]
Toulotte C, Toursel C, Olivier N.
Universite Lille Nord de France, Faculte des sciences du sport et de l'education physique, France.
+/- Click for more/less
Abstract
Objective: To compare the effectiveness of three protocols (Adapted Physical Activities, Wii Fit(®), Adapted Physical Activities + Wii Fit(®)) on the balance of independent senior subjects. Design: Case comparison study.Settings: Healthy elderly subjects living in independent community dwellings. Subjects: Thirty-six subjects, average age 75.09 ± 10.26 years, took part in this study, and were randomly assigned to one of the four experimental groups: G1 followed an Adapted Physical Activities training programme, while the second group (G2) participated in Wii Fit(®) training and the third one (G3) combined both methods. There was no training for the fourth group (G4). All subjects trained once a week (1 hour) for 20 weeks and were assessed before and after treatment. Main measures: The Tinetti test, unipedal tests and the Wii Fit(®) tests. Results: After training, the scores in the Tinetti test decreased significantly (P < 0.05) for G1, G2 and G3 respectively in static conditions and for G1 and G3 in dynamic conditions. After training, the performance in the unipedal tests decreased significantly (P < 0.05) for G1 and G3. The position of the centre of gravity was modified significantly (P < 0.05) for G2 and G3. Conclusion: After 20 training sessions, G1 (Adapted Physical Activities), G2 (Wii Fit(®)) and G3 (Adapted Physical Activities and Wii Fit(®)) improved their balance. In addition, G1 and G3 increased their dynamic balance. The findings suggest that Adapted Physical Activities training limits the decline in sensorial functions in the elderly.
Click here for more
Click for PubMed entry
Toulotte C, Toursel C, Olivier N.
Universite Lille Nord de France, Faculte des sciences du sport et de l'education physique, France.
+/- Click for more/less
Abstract
Objective: To compare the effectiveness of three protocols (Adapted Physical Activities, Wii Fit(®), Adapted Physical Activities + Wii Fit(®)) on the balance of independent senior subjects. Design: Case comparison study.Settings: Healthy elderly subjects living in independent community dwellings. Subjects: Thirty-six subjects, average age 75.09 ± 10.26 years, took part in this study, and were randomly assigned to one of the four experimental groups: G1 followed an Adapted Physical Activities training programme, while the second group (G2) participated in Wii Fit(®) training and the third one (G3) combined both methods. There was no training for the fourth group (G4). All subjects trained once a week (1 hour) for 20 weeks and were assessed before and after treatment. Main measures: The Tinetti test, unipedal tests and the Wii Fit(®) tests. Results: After training, the scores in the Tinetti test decreased significantly (P < 0.05) for G1, G2 and G3 respectively in static conditions and for G1 and G3 in dynamic conditions. After training, the performance in the unipedal tests decreased significantly (P < 0.05) for G1 and G3. The position of the centre of gravity was modified significantly (P < 0.05) for G2 and G3. Conclusion: After 20 training sessions, G1 (Adapted Physical Activities), G2 (Wii Fit(®)) and G3 (Adapted Physical Activities and Wii Fit(®)) improved their balance. In addition, G1 and G3 increased their dynamic balance. The findings suggest that Adapted Physical Activities training limits the decline in sensorial functions in the elderly.
Click here for more
Click for PubMed entry
Sunday, 26 February 2012
Using the Nintendo Wii as an Intervention in a Falls Prevention Group
Journal of American Geriatrics Society. 2012 Feb;60(2):385-7
Griffin M, Shawis T, Impson R, McCormick D, Taylor MJ.
Department of Biological Sciences, University of Essex.
No abstract is available for this article.
Click for more information
Griffin M, Shawis T, Impson R, McCormick D, Taylor MJ.
Department of Biological Sciences, University of Essex.
No abstract is available for this article.
Click for more information
Tuesday, 20 December 2011
A Pilot Study of Wii Fit Exergames to Improve Balance in Older Adults
Journal of Geriatric Physical Therapy:
October/December 2011 - Volume 34 - Issue 4 - p 161–167
Agmon, Maayan PT, PhD, MA, BA; Perry, Cynthia K. PhD, ARNP; Phelan, Elizabeth MD, MS; Demiris, George PhD; Nguyen, Huong Q. PhD
+/- Click for more/less
Abstract
Purpose: To determine the safety and feasibility of using Nintendo Wii Fit exergames to improve balance in older adults.
Methods: Seven older adults aged 84 (5) years with impaired balance (Berg Balance Scale [BBS] score < 52 points) were recruited from 4 continuing care retirement communities to participate in a single group pre- and postevaluation of Wii Fit exergames. Participants received individualized instructions (at least 5 home visits) on playing 4 exergames (basic step, soccer heading, ski slalom, and table tilt) and were asked to play these games in their homes at least 30 minutes 3 times per week for 3 months and received weekly telephone follow-up. They also completed a paper log of their exergame play and rated their enjoyment immediately after each session. Participants completed the BBS, 4-Meter Timed Walk test, and the Physical Activity Enjoyment Scale at baseline and 3 months. Semistructured interviews were conducted at the 3-month evaluation.
Results: Participants safely and independently played a mean of 50 sessions, median session duration of 31 minutes. Two of the games were modified to ensure participants' safety. Participants rated high enjoyment immediately after exergame play and expressed experiencing improved balance with daily activities and desire to play exergames with their grandchildren. Berg Balance Scores increased from 49 (2.1) to 53 (1.8) points (P = .017). Walking speed increased from 1.04 (0.2) to 1.33 (0.84) m/s (P = .018).
Conclusions: Use of Wii Fit for limited supervised balance training in the home was safe and feasible for a selected sample of older adults. Further research is needed to determine clinical efficacy in a larger, diverse sample and ascertain whether Wii Fit exergames can be integrated into physical therapy practice to promote health in older adults.
Click here for more
October/December 2011 - Volume 34 - Issue 4 - p 161–167
Agmon, Maayan PT, PhD, MA, BA; Perry, Cynthia K. PhD, ARNP; Phelan, Elizabeth MD, MS; Demiris, George PhD; Nguyen, Huong Q. PhD
+/- Click for more/less
Abstract
Purpose: To determine the safety and feasibility of using Nintendo Wii Fit exergames to improve balance in older adults.
Methods: Seven older adults aged 84 (5) years with impaired balance (Berg Balance Scale [BBS] score < 52 points) were recruited from 4 continuing care retirement communities to participate in a single group pre- and postevaluation of Wii Fit exergames. Participants received individualized instructions (at least 5 home visits) on playing 4 exergames (basic step, soccer heading, ski slalom, and table tilt) and were asked to play these games in their homes at least 30 minutes 3 times per week for 3 months and received weekly telephone follow-up. They also completed a paper log of their exergame play and rated their enjoyment immediately after each session. Participants completed the BBS, 4-Meter Timed Walk test, and the Physical Activity Enjoyment Scale at baseline and 3 months. Semistructured interviews were conducted at the 3-month evaluation.
Results: Participants safely and independently played a mean of 50 sessions, median session duration of 31 minutes. Two of the games were modified to ensure participants' safety. Participants rated high enjoyment immediately after exergame play and expressed experiencing improved balance with daily activities and desire to play exergames with their grandchildren. Berg Balance Scores increased from 49 (2.1) to 53 (1.8) points (P = .017). Walking speed increased from 1.04 (0.2) to 1.33 (0.84) m/s (P = .018).
Conclusions: Use of Wii Fit for limited supervised balance training in the home was safe and feasible for a selected sample of older adults. Further research is needed to determine clinical efficacy in a larger, diverse sample and ascertain whether Wii Fit exergames can be integrated into physical therapy practice to promote health in older adults.
Click here for more
Labels:
balance,
balance board,
elderly,
exergaming,
rehab,
wii fit
Monday, 19 December 2011
Assisting people with disabilities to actively improve their collaborative physical activities with Nintendo Wii Balance Boards by controlling environmental stimulation.
Research in Developmental Disabilities, Volume 33, Issue 1, January-February 2012, Pages 39-44
Ching-Hsiang Shih, Chia-Ju Shih and Ching-Tien Shih
+/- Click for more/less
Ching-Hsiang Shih, Chia-Ju Shih and Ching-Tien Shih
+/- Click for more/less
Highlights
► Commercial high-technology products can be used as high performance assistive devices. ► The Nintendo Wii Balance Board can be used as a high performance standing location detector. ► Four people (two groups) with developmental disabilities can control environmental stimulation through the Wii Balance Board by performing collaborative physical activities.
Click here for more
Click here for more
Labels:
balance,
balance board,
lower limb,
physical activity
Friday, 16 December 2011
Improving Lower Limb Weight Distribution Asymmetry During the Squat Using Nintendo Wii Balance Boards and Real-Time Feedback.
McGough, R, Paterson, K, Bradshaw, EJ, Bryant, AL, and Clark, RA.
Improving lower limb weight distribution asymmetry during the squat using Nintendo WII balance boards and real-time feedback. J Strength Cond Res 26(1): 47-52, 2012-
McGough R, Paterson K, Bradshaw EJ, Bryant AL, Clark RA.
+/- Click for more/less
Abstract
Weight-bearing asymmetry (WBA) may be detrimental to performance and could increase the risk of injury; however, detecting and reducing it is difficult in a field setting. This study assessed whether a portable and simple-to-use system designed with multiple Nintendo Wii Balance Boards (NWBBs) and customized software can be used to evaluate and improve WBA. Fifteen elite Australian Rules Footballers and 32 age-matched, untrained participants were tested for measures of WBA while squatting. The NWBB and customized software provided real-time visual feedback of WBA during half of the trials. Outcome measures included the mean mass difference (MMD) between limbs, interlimb symmetry index (SI), and percentage of time spent favoring a single limb (TFSL). Significant reductions in MMD (p = 0.028) and SI (p = 0.007) with visual feedback were observed for the entire group data. Subgroup analysis revealed significant reductions in MMD (p = 0.047) and SI (p = 0.026) with visual feedback in the untrained sample; however, the reductions in the trained sample were nonsignificant. The trained group showed significantly less WBA for TFSL under both visual conditions (no feedback: p = 0.015, feedback: p = 0.017). Correlation analysis revealed that participants with high levels of WBA had the greatest response to feedback (p < 0.001, ρ = 0.557). In conclusion, WBA exists in healthy untrained adults, and these asymmetries can be reduced using real-time visual feedback provided by an NWBB-based system. Healthy, well-trained professional athletes do not possess the same magnitude of WBA. Inexpensive, portable, and widely available gaming technology may be used to evaluate and improve WBA in clinical and sporting settings.
Click here for more
Improving lower limb weight distribution asymmetry during the squat using Nintendo WII balance boards and real-time feedback. J Strength Cond Res 26(1): 47-52, 2012-
McGough R, Paterson K, Bradshaw EJ, Bryant AL, Clark RA.
+/- Click for more/less
Abstract
Weight-bearing asymmetry (WBA) may be detrimental to performance and could increase the risk of injury; however, detecting and reducing it is difficult in a field setting. This study assessed whether a portable and simple-to-use system designed with multiple Nintendo Wii Balance Boards (NWBBs) and customized software can be used to evaluate and improve WBA. Fifteen elite Australian Rules Footballers and 32 age-matched, untrained participants were tested for measures of WBA while squatting. The NWBB and customized software provided real-time visual feedback of WBA during half of the trials. Outcome measures included the mean mass difference (MMD) between limbs, interlimb symmetry index (SI), and percentage of time spent favoring a single limb (TFSL). Significant reductions in MMD (p = 0.028) and SI (p = 0.007) with visual feedback were observed for the entire group data. Subgroup analysis revealed significant reductions in MMD (p = 0.047) and SI (p = 0.026) with visual feedback in the untrained sample; however, the reductions in the trained sample were nonsignificant. The trained group showed significantly less WBA for TFSL under both visual conditions (no feedback: p = 0.015, feedback: p = 0.017). Correlation analysis revealed that participants with high levels of WBA had the greatest response to feedback (p < 0.001, ρ = 0.557). In conclusion, WBA exists in healthy untrained adults, and these asymmetries can be reduced using real-time visual feedback provided by an NWBB-based system. Healthy, well-trained professional athletes do not possess the same magnitude of WBA. Inexpensive, portable, and widely available gaming technology may be used to evaluate and improve WBA in clinical and sporting settings.
Click here for more
Saturday, 12 November 2011
Effects of an Interactive Computer Game Exercise Regimen on Balance Impairment in Frail Community-Dwelling Older Adults: A Randomized Controlled Trial
Published online before print - 28 July 2011
Physical Therapy October 2011 vol. 91 no. 10 1449-1462
Tony Szturm, Aimee L. Betker, Zahra Moussavi, Ankur Desai andValerie Goodman
+/- Click for more/less
Physical Therapy October 2011 vol. 91 no. 10 1449-1462
Tony Szturm, Aimee L. Betker, Zahra Moussavi, Ankur Desai andValerie Goodman
+/- Click for more/less
Abstract
Background Due to the many problems associated with reduced balance and mobility, providing an effective and engaging rehabilitation regimen is essential to progress recovery from impairments and to help prevent further degradation of motor skills.
Objectives The purpose of this study was to examine the feasibility and benefits of physical therapy based on a task-oriented approach delivered via an engaging, interactive video game paradigm. The intervention focused on performing targeted dynamic tasks, which included reactive balance controls and environmental interaction.
Design This study was a randomized controlled trial.
Setting The study was conducted in a geriatric day hospital.
Participants Thirty community-dwelling and ambulatory older adults attending the day hospital for treatment of balance and mobility limitations participated in the study.
Interventions Participants were randomly assigned to either a control group or an experimental group. The control group received the typical rehabilitation program consisting of strengthening and balance exercises provided at the day hospital. The experimental group received a program of dynamic balance exercises coupled with video game play, using a center-of-pressure position signal as the computer mouse. The tasks were performed while standing on a fixed floor surface, with progression to a compliant sponge pad. Each group received 16 sessions, scheduled 2 per week, with each session lasting 45 minutes. Measurements Data for the following measures were obtained before and after treatment: Berg Balance Scale, Timed “Up & Go” Test, Activities-specific Balance Confidence Scale, modified Clinical Test of Sensory Interaction and Balance, and spatiotemporal gait variables assessed in an instrumented carpet system test.
Results Findings demonstrated significant improvements in posttreatment balance performance scores for both groups, and change scores were significantly greater in the experimental group compared with the control group. No significant treatment effect was observed in either group for the Timed “Up & Go” Test or spatiotemporal gait variables.
Limitations The sample size was small, and there were group differences at baseline in some performance measures. Conclusion Dynamic balance exercises on fixed and compliant sponge surfaces were feasibly coupled to interactive game-based exercise. This coupling, in turn, resulted in a greater improvement in dynamic standing balance control compared with the typical exercise program. However, there was no transfer of effect to gait function.
Click here for more
Background Due to the many problems associated with reduced balance and mobility, providing an effective and engaging rehabilitation regimen is essential to progress recovery from impairments and to help prevent further degradation of motor skills.
Objectives The purpose of this study was to examine the feasibility and benefits of physical therapy based on a task-oriented approach delivered via an engaging, interactive video game paradigm. The intervention focused on performing targeted dynamic tasks, which included reactive balance controls and environmental interaction.
Design This study was a randomized controlled trial.
Setting The study was conducted in a geriatric day hospital.
Participants Thirty community-dwelling and ambulatory older adults attending the day hospital for treatment of balance and mobility limitations participated in the study.
Interventions Participants were randomly assigned to either a control group or an experimental group. The control group received the typical rehabilitation program consisting of strengthening and balance exercises provided at the day hospital. The experimental group received a program of dynamic balance exercises coupled with video game play, using a center-of-pressure position signal as the computer mouse. The tasks were performed while standing on a fixed floor surface, with progression to a compliant sponge pad. Each group received 16 sessions, scheduled 2 per week, with each session lasting 45 minutes. Measurements Data for the following measures were obtained before and after treatment: Berg Balance Scale, Timed “Up & Go” Test, Activities-specific Balance Confidence Scale, modified Clinical Test of Sensory Interaction and Balance, and spatiotemporal gait variables assessed in an instrumented carpet system test.
Results Findings demonstrated significant improvements in posttreatment balance performance scores for both groups, and change scores were significantly greater in the experimental group compared with the control group. No significant treatment effect was observed in either group for the Timed “Up & Go” Test or spatiotemporal gait variables.
Limitations The sample size was small, and there were group differences at baseline in some performance measures. Conclusion Dynamic balance exercises on fixed and compliant sponge surfaces were feasibly coupled to interactive game-based exercise. This coupling, in turn, resulted in a greater improvement in dynamic standing balance control compared with the typical exercise program. However, there was no transfer of effect to gait function.
Click here for more
Friday, 28 October 2011
Enabling people with developmental disabilities to actively perform designated physical activities with Nintendos Wii Balance Boards
Research in Developmental Disabilities
Volume 32, Issue 6, November-December 2011, Pages 2780-2784
Ching-Hsiang Shiha, Chiao-Chen Chunga, Ching-Tien Shihb, Ling-Che Chena
+/- Click for more/less
Abstract The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple instructions by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards. This study was carried out according to an A–B–A–B design. Data showed that both participants significantly increased their target response (performing a designated physical activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases.
Highlights ► Commercial high-technology products can be modified in their default functions to be used as high performance assistive devices. ► The Nintendo Wii Balance Board can be used as a high performance standing location detector. ► Two people with developmental disabilities can control environmental stimulation through the Wii Balance Board by performing a designated physical activity.
Click here for more
Volume 32, Issue 6, November-December 2011, Pages 2780-2784
Ching-Hsiang Shiha, Chiao-Chen Chunga, Ching-Tien Shihb, Ling-Che Chena
+/- Click for more/less
Abstract The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple instructions by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards. This study was carried out according to an A–B–A–B design. Data showed that both participants significantly increased their target response (performing a designated physical activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases.
Highlights ► Commercial high-technology products can be modified in their default functions to be used as high performance assistive devices. ► The Nintendo Wii Balance Board can be used as a high performance standing location detector. ► Two people with developmental disabilities can control environmental stimulation through the Wii Balance Board by performing a designated physical activity.
Click here for more
Labels:
balance,
balance board,
disabilities,
wii controller
Tuesday, 20 September 2011
METs in Adults While Playing Active Video Games: A Metabolic Chamber Study
Medicine & Science in Sports & Exercise:
June 2010 - Volume 42 - Issue 6 - pp 1149-1153
MIYACHI, MOTOHIKO; YAMAMOTO, KENTA; OHKAWARA, KAZUNORI; TANAKA, SHIGEHO
+/- Click for more/less
Abstract
Purpose: Active video game systems controlled through arm gestures and motions (Nintendo Wii Sports) and video games controlled through force plate (Wii Fit Plus) are becoming increasingly popular. This study was performed to determine the energy expenditure (EE) during Wii Fit Plus and Wii Sports game activities.
Methods: Twelve adult men and women performed all the activities of Wii Sports (five activities: golf, bowling, tennis, baseball, and boxing) and Wii Fit Plus (63 activities classified as yoga, resistance, balance, and aerobic exercises). Each activity was continued for at least 8 min to obtain a steady-state EE. Because EE was assessed in an open-circuit indirect metabolic chamber consisting of an airtight room (20,000 or 15,000 L), subjects were freed of apparatus to collect expired gas while playing the games. MET value was calculated from resting EE and steady-state EE during activity.
Results: The mean MET values of all 68 activities were distributed over a wide range from 1.3 METs (Lotus Focus) to 5.6 METs (single-arm stand). The mean MET values in yoga, balance, resistance, and aerobic exercise of Wii Fit Plus and Wii Sports were 2.1, 2.0, 3.2, 3.4, and 3.0 METs, respectively. Forty-six activities (67%) were classified as light intensity (<3 METs), and 22 activities (33%) were classified as moderate intensity (3.0-6.0 METs). There were no vigorous-intensity activities (>6.0 METs).
Conclusions: Time spent playing one-third of the activities supplied by motion- and gesture-controlled video games can count toward the daily amount of exercise required according to the guidelines provided by the American College of Sports Medicine and the American Heart Association, which focus on 30 min of moderate-intensity daily physical activity 5 d·wk−1.
Click for more details
Labels:
balance,
exercise,
fitness,
wii fit,
wii sports
Subscribe to:
Posts (Atom)
Abstract
Improvement of sensory strategies is a relevant part of balance rehabilitation in multiple sclerosis (MS). This study aimed to Assess the effectiveness of visual-feedback exercises in improving balance in MS. We divided 36 patients into Wii and control-treated groups that underwent balance rehabilitation. Outcomes were obtained for Berg Balance Scale (BBS), Modified Fatigue Impact Scale, and sway area under conditions of opened and closed eyes. BBS showed a statistically significant improvement (from 49.6 to 54.6 points, p < 0.05) in the Wii group. Interactive visual-feedback exercises such as Wii could be more effective than the current standard protocol in improving balance disorders in MS.
Click here for more information